I’m a Ph.D. candidate at Computer Science and Technology at Tsinghua University, advised by Prof. Carlo Cannistraci. I obtained my Master’s degree in Data Science from Tsinghua University and the University of Washington, advised by Prof. Jie Tang, and my B.E. at Computer Science and Technology at Tsinghua University.
My research focuses on efficient AI, natural language processing, and graph learning.
Email: jialin [dot] zhao97 [at] gmail [dot] com
Vitæ
Full Resume in PDF.
(*: co-first author; ^: corresponding author)
-
Pivoting Factorization: A Compact Meta Low-Rank Representation of Sparsity for Efficient Inference in Large Language Models
Jialin Zhao^, Yingtao Zhang, and Carlo Vittorio Cannistraci^
ICML’25: Forty-second International Conference on Machine Learning , 2025
The rapid growth of Large Language Models has driven demand for effective model compression techniques to reduce memory and computation costs. Low-rank pruning has gained attention for its GPU compatibility across all densities. However, low-rank pruning struggles to match the performance of semi-structured pruning, often doubling perplexity at similar densities. In this paper, we propose Pivoting Factorization (PIFA), a novel lossless meta low-rank representation that unsupervisedly learns a compact form of any low-rank representation, effectively eliminating redundant information. PIFA identifies pivot rows (linearly independent rows) and expresses non-pivot rows as linear combinations, achieving 24.2% additional memory savings and 24.6% faster inference over low-rank layers at rank = 50% of dimension. To mitigate the performance degradation caused by low-rank pruning, we introduce a novel, retraining-free reconstruction method that minimizes error accumulation (M). MPIFA, combining M and PIFA into an end-to-end framework, significantly outperforms existing low-rank pruning methods, and achieves performance comparable to semi-structured pruning, while surpassing it in GPU efficiency and compatibility. Our code is available at https://github.com/biomedical-cybernetics/pivoting-factorization.
-
Sparse Spectral Training and Inference on Euclidean and Hyperbolic Neural Networks
Jialin Zhao^, Yingtao Zhang, Xinghang Li, Huaping Liu, and Carlo Vittorio Cannistraci^
ICML’25: Forty-second International Conference on Machine Learning , 2025
The growing demands on GPU memory posed by the increasing number of neural network parameters call for training approaches that are more memory-efficient. Previous memory reduction training techniques, such as Low-Rank Adaptation (LoRA) and ReLoRA, face challenges, with LoRA being constrained by its low-rank structure, particularly during intensive tasks like pre-training, and ReLoRA suffering from saddle point issues. In this paper, we propose Sparse Spectral Training (SST) to optimize memory usage for pre-training. SST updates all singular values and selectively updates singular vectors through a multinomial sampling method weighted by the magnitude of the singular values. Furthermore, SST employs singular value decomposition to initialize and periodically reinitialize low-rank parameters, reducing distortion relative to full-rank training compared to other low-rank methods. Through comprehensive testing on both Euclidean and hyperbolic neural networks across various tasks, SST demonstrates its ability to outperform existing memory reduction training methods and is comparable to full-rank training in various cases. On LLaMA-1.3B, with only 18.7% of the parameters trainable compared to full-rank training (using a rank equivalent to 6% of the embedding dimension), SST reduces the perplexity gap between other low-rank methods and full-rank training by 97.4%. This result highlights SST as an effective parameter-efficient technique for model pre-training.
-
Adaptive diffusion in graph neural networks
Jialin Zhao, Yuxiao Dong, Ming Ding, Evgeny Kharlamov, and Jie Tang^
NeurIPS’21: Advances in neural information processing systems, 2021
The success of graph neural networks (GNNs) largely relies on the process of aggregating information from neighbors defined by the input graph structures. Notably, message passing based GNNs, e.g., graph convolutional networks, leverage the immediate neighbors of each node during the aggregation process, and recently, graph diffusion convolution (GDC) is proposed to expand the propagation neighborhood by leveraging generalized graph diffusion. However, the neighborhood size in GDC is manually tuned for each graph by conducting grid search over the validation set, making its generalization practically limited. To address this issue, we propose the adaptive diffusion convolution (ADC) strategy to automatically learn the optimal neighborhood size from the data. Furthermore, we break the conventional assumption that all GNN layers and feature channels (dimensions) should use the same neighborhood for propagation. We design strategies to enable ADC to learn a dedicated propagation neighborhood for each GNN layer and each feature channel, making the GNN architecture fully coupled with graph structures—the unique property that differs GNNs from traditional neural networks. By directly plugging ADC into existing GNNs, we observe consistent and significant outperformance over both GDC and their vanilla versions across various datasets, demonstrating the improved model capacity brought by automatically learning unique neighborhood size per layer and per channel in GNNs.
-
Plug-and-Play: An Efficient Post-training Pruning Method for Large Language Models
Yingtao Zhang^, Haoli Bai, Haokun Lin, Jialin Zhao, Lu Hou, and Carlo Vittorio Cannistraci^
ICLR’24: The Twelfth International Conference on Learning Representations , 2024
With the rapid growth of large language models (LLMs), there is increasing demand for memory and computation in LLMs. Recent efforts on post-training pruning of LLMs aim to reduce the model size and computation requirements, yet the performance is still sub-optimal. In this paper, we present a plug-and-play solution for post-training pruning of LLMs. The proposed solution has two innovative components: 1) Relative Importance and Activations (RIA), a new pruning metric that jointly considers the weight and activations efficiently on LLMs, and 2) Channel Permutation, a new approach to maximally preserves important weights under N:M sparsity. The two proposed components can be readily combined to further enhance the N:M semi-structured pruning of LLMs. Our empirical experiments show that RIA alone can already surpass all existing post-training pruning methods on prevalent LLMs, e.g., LLaMA ranging from 7B to 65B. Furthermore, N:M semi-structured pruning with channel permutation can even outperform the original LLaMA2-70B on zero-shot tasks, together with practical speed-up on specific hardware. Our code is available at: https://github.com/biomedical-cybernetics/Relative-importance-and-activation-pruning
-
Epitopological learning and Cannistraci-Hebb network shape intelligence brain-Inspired theory for ultra-sparse advantage in deep learning
Yingtao Zhang, Jialin Zhao, Wenjing Wu, Alessandro Muscoloni, and Carlo Vittorio Cannistraci^
ICLR’24: The Twelfth International Conference on Learning Representations , 2024
Sparse training (ST) aims to ameliorate deep learning by replacing fully connected artificial neural networks (ANNs) with sparse or ultra-sparse ones, such as brain networks are, therefore it might benefit to borrow brain-inspired learning paradigms from complex network intelligence theory. Here, we launch the ultra-sparse advantage challenge, whose goal is to offer evidence on the extent to which ultra-sparse (around 1% connection retained) topologies can achieve any leaning advantage against fully connected. Epitopological learning is a field of network science and complex network intelligence that studies how to implement learning on complex networks by changing the shape of their connectivity structure (epitopological plasticity). One way to implement Epitopological (epi- means new) Learning is via link prediction: predicting the likelihood of non-observed links to appear in the network. Cannistraci-Hebb learning theory inspired the CH3-L3 network automata rule for link prediction which is effective for general-purpose link prediction. Here, starting from CH3-L3 we propose Epitopological Sparse Meta-deep Learning (ESML) to apply Epitopological Learning to sparse training. In empirical experiments, we find that ESML learns ANNs with ultra-sparse hyperbolic (epi-)topology in which emerges a community layer organization that is meta-deep (meaning that each layer also has an internal depth due to power-law node hierarchy). Furthermore, we discover that ESML can in many cases automatically sparse the neurons during training (arriving even to 30% neurons left in hidden layers), this process of node dynamic removal is called percolation. Starting from this network science evidence, we design Cannistraci-Hebb training (CHT), a 4-step training methodology that puts ESML at its heart. We conduct experiments on 7 datasets and 5 network structures comparing CHT to dynamic sparse training SOTA algorithms and the fully connected counterparts. The results indicate that, with a mere 1% of links retained during training, CHT surpasses fully connected networks on VGG16, GoogLeNet, ResNet50, and ResNet152. This key finding is an evidence for ultra-sparse advantage and signs a milestone in deep learning. CHT acts akin to a gradient-free oracle that adopts CH3-L3-based epitopological learning to guide the placement of new links in the ultra-sparse network topology to facilitate sparse-weight gradient learning, and this in turn reduces the convergence time of ultra-sparse training. Finally, CHT offers the first examples of parsimony dynamic sparse training because, in many datasets, it can retain network performance by percolating and significantly reducing the node network size. Our code is available at: https://github.com/biomedical-cybernetics/Cannistraci-Hebb-training
Services
Conference reviewer: ICML (2025), NeurIPS (2025)
Journal reviewer: IEEE Transactions on Big Data, Applied Network Science, Scientific Reports